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Diverse roles and structures
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Transport

Enzymatic activities
Signal transduction
Intercellular junctions
Cell-cell recognition
Cell shape
Membrane dynamics

The Machinery of Life,
David Goodsell
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Zooming in

Vitamin B12

CYTOPLASM
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The membrane environment

Composition

» Glycerophospholipids
*  Phosphatidic acid
Phosphatidylinositol
Phosphatidylserine
Phosphatidylcholine
Phosphatidylethanolamine
Phosphatidylglycerol
Diphosphatidylglycerol
Variable size and saturation of the aliphatic chains

()
» Glyceroglycolipids
< ()

»  Sphingophospholipids
< ()

» Sphingoglycolipids
< ()

» Sterols
© ()
* Other

»  Dolichols

© ()

hydrophilic

hydrophobic
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Function

+ Barriers
Create variable compartments

» Support (for membrane proteins)
Selective barrier, membrane curvature,
inner/outer leaflet properties

* Modulate protein function
* Act as cofactors
Transverse forces (hydrophobic mismatch)
Lateral forces
Lipid rafts
» Signaling

PI, DAG, ceramide, PS, (...)

» Reservoir of lipids for the cell
Energy, Signal molecules/precursors (...)
+ Other:
o ()
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Surfactants as tools
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Solubilizing membrane proteins
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Protein-detergent complexes

Critical micelle concentration (CMC) - Concentration range where surfactant

? monomers (e.g. detergents) spontaneously form non-covalent aggregates called
Lipid-detergent mixed micelle  Detergent micelle micelles. Depends on the nature of the surfactant, salt concentration, etc.

Purifying membrane proteins
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Purifying membrane proteins
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disk membrane

O, cytoplasm

mitochondrial
matrix

- mitochondrial
, ¢ %i,: inner membrane
g

Cytochrome bc1

Producing (membrane) proteins
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To produce the protein encoded by a piece of cloned DNA,

expression plasmids/vectors are required: (\{\ /\
(\l q )

» Promoter (inducible vs constitutive) : allows regulating amount and time of )
protein expression

» Antibiotic: allows selecting cells carrying the plasmid

« Ori: origin of replication/replicon is the place where DNA replication begins, ?
enabling a plasmid to reproduce itself )

It allows inserting a gene at a precise position.

s+ Common DNA sources and delivery mechanisms are plasmids, viruses (e.g.

baculovirus, retrovirus, adenovirus), artificial chromosomes and bacteriopha-
ge (such as lambda). \

* Multiple cloning region: short segment of DNA with multiple restriction sites. P

-




Producing (membrane) proteins

Cell-based expression system:
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» The plasmid is placed inside a cell

Common hosts are bacteria (e.g. E. coli, B. subtilis), yeast (e.g. S. cerevisiae,
P, pastoris), eukaryotic cell lines (HelL.a, HEK), (...).

The best expression system depends on the characteristics of the protein to produce:

* Bacterial - can produce large amounts of protein. Post-translational modifications and folding
(inclusion bodies) can be a problem.

« S. cerevisiae — when significant post-translational modifications are required.
* Insect or mammalian cell lines — for human-like splicing of mMRNA. Glycosylation, (...).

© ()

Cell-free expression system:

* in vitro, with purified RNA polymerase,
ribosomes, tRNA and ribonucleotides.

Producing (membrane) proteins
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(...)
RNA polymerase will produce mRNA.
Ribosomes translate mRNA into a protein.

Clone (homolog genes)

Clone (plasmid/promoter type)

Express (host cells, growth conditions) GT

Protein targetting, yield

Protein functionality
Protein purification scheme

Epitope tags (portion of a molecule where antibody binds) can be added to help
visualization by western blot or immunofluorescence.
Peptides can be added to increase solubility and detection (e.g. MBP, GFP)...




Purifying membrane proteins
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Delipidation

Binding Lysis
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* Critical solubilization concentration — Exact value depends on the nature of the detergent, the nature and
concentration of lipids, the protein concentration, temperature, buffer conditions, etc.

e . .
R

Critical micelle concentration (CMC) - Concentration range where surfactant monomers (e.g.
detergents) spontaneously form non-covalent aggregates called micelles. Depends on the nature of the
surfactant, salt concentration, etc.
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Membrane fragments
(from broken cells) with
overproduced protein

UNI
FREIBURG

The detergent variable

O Amino oxides

N7
N\

n-Dodecyl-N,N-Dimethylamine-N-Oxide (LDAO)
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5-Cyclohexyl-1-Pentyl-3-D-Maltoside (Cymal-5)
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Decanoyl-N-Hydroxyethylglucamide (Hega-10)
Decanoyl-N-Methylglucamide (Mega-10)

© Maltosides

© NG class
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2,2-dioctylpropane-1,3-bis-B-D-glucopyranoside
(Decyl glucose neopentyl glycol)
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~ Thioglycosides v«
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Th | O m a|tOS | d eS n-Decyl-B-D-Thiomaltopyranoside (DTM)




The detergent variable
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Solubilization test:

e.g. Western blot* of solubilized (S) and un-solubilized (P) membranes

1 ) pimac . 5 6 7B 1-3DS
& S P S PAESE PRSI EEERSEEERSE PA SRR P ANC I R
- 2: HEGA-10
a 3: Cg4E,
Ve A A & & > 4: LDAO
5: DDM
L 6: Triton X-100
7: FOS-CHOLINE-12
. 8: OGP

Epitope tags (portion of a molecule where antibody binds) can be added to help
visualization by western blot or immunofluorescence.
Peptides can be added to increase solubility and detection (e.g. MBP, GFP)... J

*Rath et al (2007), PNAS, 106:1760

The detergent variable
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1. Protein solubilization v

GOAL - Extract efficiently the target membrane protein and keep it stable in solution.

2. Protein purification & stability

Head group size:
Alkyl tail length: ‘ ‘/\/\/\N

Head group charge:

~~-0 I o~

Protein stability iy

CMC mild
N

Micelle size




The beauty and the beast

3. Protein characterization

X-ray beam  Crystal
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Diffracted
X-rays

Types of membrane protein crystals
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Never give up

Monovalent antibody fragments can be generated recombinantly as Fv (fragment variable ~28
kDa) or Fab (fragment antibody binding ~56 kDa) or by proteolytic cleavage.
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Crystal lattices of:

(1) four cytochrome ¢ oxidase subunits with
recombinant Fv fragment;

(2) (2) cytochrome bc1 complex with Fv
fragment bound to the catalytic Rieske
protein subunit;

(8) (3) KcsA in complex with a proteolytic Fab
fragment

In: Hunte & Michel (2002) Cur Op Struct Biol, 12:503

Never give up

:
Conventional Camel Heavy-Chain VHH or
antibody antibody Nanobody

Recombinant Nanobodies are small (15kDa), monomeric, bind target with nM affinity, are stable,
easy to manipulate and are well expressed in bacterial expression systems so that they are
cheaper and easier to produce in all kind of formats than standard monoclonal antibodies.

Nanobodies often bind to epitopes that are less immunogenic for conventional antibodies, such
as the active sites of enzymes.

Due to their small size, they also target areas that are not accessible to standard antibodies.
Another advantage is that they generally bind conformational epitopes

http://www.structuralbiology.be/chaperones
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High-resolution protein crystal structures

* |dentify residues and elements

» Detect conformational changes

» Discuss molecular interactions

+ Visualize pores/channels/cavities

+ Reveal lipid/detergent binding sites

» |dentify functional residues & locations
(active site, selectivity filter, gating, ...)

» High level of disorder

Electron density map of A--Amt1 at 1.3 A
resolution.

|
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Never give up
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Proteins are dynamics entities!
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Molecular Architecture of the

KvAP Voltage-Depend.ent K+
Channel in a Lipid Bilayer
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Structure-based scheme of the HK reactions

kinase autophosphorylation

e Phosphotransferase
¥ \ 53:Spo0F (B N A*)

Phosphatase (A* — A)

—

Marina et al, EMBO J (2005) 24:4247
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How is signal transmitted after reception?
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E.g. - HAMP domains are typically associated with membrane domains and relay extracellular
signals into intracellular responses. A unifying mechanism for HAMP domain signal transduction
has yet to emerge, mainly due to lack of structural information.
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Histidine kinase

histidine kinase (HK)
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SAXS of the full-length sensor histidine kinase

»
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Dmitri Svergun, EMBL, Hamburg
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Protein is pure, stable and reveals an
homogeneous trimeric form in buffer
containing 10 % glycerol and 0.03 %
DDM.

45 -

— protein in 0.03 % DDM
— buffer without protein

40
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The beauty and the beast
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@ “Density matching” — Match the scattering density (contrast) of the solvent to that of the detergent..

Vi

% “Subtracting micellar scattering” — Separate the contributions of the detergent micelles in the presence and

absence of protein..

VA

proce

% “Singular value decomposition” — Collect data at various protein:detergent ratios and apply a global fitting

dure..
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Adapted from:
Lipfert & Doniach (2007)
Ann Rev Biophys Biomol
Struct 36:307.

0.1 02
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The beauty and the beast

How to get rid of detergent backscattering from protein scattering?

y 4
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Dialysis — Detergents with high CMCs
are easily removed by dialysis. So that
micelles disintegrate into monomers
that easily pass through dialysis
tubing over time.

Hydrophobic beads — Detergents with
low CMCs are typically removed by
adsorption to hydrophobic beads
(bio-beads) followed by filtration or
centrifugation.

Chromatography — Gel filtration can
be used to separate detergent
micelles from protein-detergent
complexes and free protein based on
size differences. Detergents can also
be removed or exchanged by affinity
chromatography.
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SAXS of the full-length sensor histidine kinase

Log{1}

Model obtained using crystal structure models and the ensemble optimization method (EOM):

Dmitri Svergun, EMBL, Hamburg
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The beauty and the beast (...)
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The lipid environment can severely
influence the protein

» fold

» activity

Vitamin B12

lo phase lipid  Cholesterol Transmembrane Id phase lipid
protein

The beauty and the beast (...)
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3. Protein characterization (cont.)

» Functional assays
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Reconstitution of membrane proteins
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Liposome solubilization:

M

Proteoliposome

NEVER GIVE UP %“E
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3. Protein characterization

Nanodiscs

Bicelles
Lipidic-cubic phases
Detergents (...)

Lipid-like detergents
Lipids

lo phase lipid  Cholesterol Transmembrane Id phase lipid

.
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Vitamin B12







