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Abstract
Traumatic brain injury (TBI), often referred to as the “silent epidemic”, is the most common cause of mortality and mor-
bidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic 
consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clini-
cal management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that 
existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological 
mechanisms,	including	inflammation,	oxidative	stress,	blood-brain	barrier	(BBB)	disruption,	ionic	disturbance,	excitotox-
icity,	mitochondrial	dysfunction,	neuronal	necrosis,	and	apoptosis.	Statins	have	several	beneficial	pleiotropic	effects	(anti-
excitotoxicity,	 anti-inflammatory,	 anti-oxidant,	 anti-thrombotic,	 immunomodulatory	 activity,	 endothelial	 and	 vasoactive	
properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such 
as	statins	that	target	numerous	and	diverse	pathological	mechanisms,	may	be	more	effective	than	a	single-target	approach	
in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of 
statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic 
application of statins are also discussed.
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MSCs  Mesenchymal stromal cells
NMDA  N-methyl-D-aspartate
nNOS  Neuronal isoform of nitric oxide synthase
NO  Nitric oxide
NSC  Neural stem cells
PMN  Polymorphonuclear leukocytes
PRRs  Pattern recognition receptors
ROS  Reactive oxygen species
TBI  Traumatic brain injury
TJs  Tight junctions
TLR  Toll-like receptors
TNF-α	 	Ttumor	necrosis	factor-alpha
Tregs  Regulatory T cells
VEGF  Vascular endothelial growth factor
VEGFR-2  VEGF receptor
vWF  von Willebrand factor

Introduction

Traumatic brain injury (TBI), in healthcare referred to as 
the “silent epidemic” [1], is the leading cause among all 
trauma-related injuries globally of mortality and morbidity, 
with considerable medical, familial, social, and economic 
consequences [2, 3].	 It	 affects	 approximately	 69	 million	
people worldwide each year [4]. According to data from the 
Centers for Disease Control and Prevention (CDC), nearly 
2.8 million people in the United States of America (USA) 
sustain	a	TBI,	with	almost	56,000	TBI-related	deaths	annu-
ally [5], and an estimated 5.3 million individuals living with 
TBI-related dysfunction [6, 7]. TBI can cause both primary 
and secondary neuronal tissue damage, leading to complex 
pathogenesis that results in transient or permanent neuro-
logical	 deficits	 [8] or neurological complications, such as 
Alzheimer’s disease (AD), impaired attention, mental health 
issues, poor executive function, and seizures, are common 
outcomes of TBI [9].

Although therapeutic approaches for TBI have been 
remarkably improved in recent years, there remains a lack 
of	effective	treatments	and	clinical	management	[10]. Novel 
treatment strategies being explored include neuro-repair 
methods, infusion of mesenchymal stromal cells (MSCs), 
remote ischemic conditioning, and medication such as sex 
hormones, melatonin, minocycline, and hyperoxia [11, 12]. 
Although these interventions have been successful in labo-
ratory studies and preclinical models, clinical trials have 
generally	failed	to	show	true	benefits	in	humans	[13]. While 
statins are among the most widely used class of lipid-lower-
ing therapies used either alone or in combination with other 
agents [14–17],	 they	 also	 exert	 lipid-independent	 effects	
[18–26]. These medications have exhibited the most prom-
ise in improving the outcomes of TBI patients [12, 27, 28]. 

The Operation Brain Trauma Therapy Consortium also rec-
ommends statins for brain damage as a possible pharmaco-
therapy for TBI and its sequelae [29, 30]. However, limited 
and	inconsistent	data	regarding	statin	efficacy	in	TBI	exist	
in the literature. This may be attributed to the heterogene-
ity	of	TBI	pathology,	 the	variety	of	statins	studied,	differ-
ing analytical methodologies across studies, heterogeneous 
populations, inclusion of those with pre-existing cognitive 
impairments,	 and	 differing	 endpoints.	 The	 current	 review	
was undertaken to delve into the immune system alterations 
that underlie TBI pathogenesis and to explore the mecha-
nisms through which statins may limit TBI severity. We will 
also highlight the gaps in the extant evidence on the thera-
peutic potential of statins in TBI.

Pathophysiology of TBI

Hypoxic conditions in the post-TBI brain cause the under-
production of adenosine 5 triphosphate (ATP), which 
impairs ionic homeostasis and leads to intracellular sodium 
overload and intracellular hypercalcemia [31]. Glutamate 
released from neuronal death, and its overproduction, 
results in increased extracellular glutamate concentrations 
contributing	 to	 excitotoxic	 effects	 [32]. Astrocytes absorb 
glutamate and transform it into glutamine as an alterna-
tive energy source in normal conditions. However, in this 
pathologic	condition,	astrocytes	cannot	sufficiently	remove	
excessive glutamate from the extracellular space. Gluta-
mate stimulates neuronal receptors, such as N-methyl-D-
aspartate	(NMDA),	inducing	an	influx	of	abundant	calcium	
(Ca²+) and sodium. This ion imbalance leads to cell mem-
brane depolarization and elevated intracellular Ca²+ levels, 
resulting in mitochondrial dysfunction, diminished ATP 
production, energy failure, and cell apoptosis. Production 
of reactive oxygen species (ROS) and nitric oxide (NO) 
species occurs following the loss of mitochondrial integ-
rity. These cumulatively induce oxidative stress, negatively 
impacting membrane lipids, proteins, and DNA. Addition-
ally, free Ca2 + activates various enzymes, e.g. caspases, 
which relate to DNA fragmentation and cell death [33, 34]. 
Further calcium-activated enzymes, for example, calpains 
impair axonal function and transport by disrupting the 
axon’s	 cytoskeletal	 filaments	 [35]. Primary injury causes 
glial cell (microglia and astrocyte) activation, resulting in 
the production of Damage-associated molecular patterns 
(DAMPs),	 and	 triggering	 inflammatory	 responses	 in	 the	
brain [36, 37]. Microglia are activated when they detect 
DAMPs, and then they can clear debris and generate neu-
rotrophic agents, cytokines, and ROS. As a result, immune 
cells such as neutrophils and monocytes migrate to this 
inflammatory	microenvironment.	This	leads	to	further	ROS	
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production, generation of excitatory neurotransmitters, and 
additional cellular migration of monocytes and neutrophils 
to the injured area. Recruited neutrophils and monocytes 
display a desirable mechanism to eliminate pathological 
debris	and	repair,	although	they	may	also	exacerbate	inflam-
mation and precipitate neuronal defects [38]. They diminish 
BBB	integrity,	leading	to	increased	extracellular	fluid	that,	
combined with cell swelling, results in brain edema and 
elevated intracranial pressure (ICP) [34]. Necrotic neurons 
release HMGB-1 as a DAMP, causing microglia to pro-
duce	 interleukins	 (IL)	 e.g.	 IL-6;	which	 induces	 astrocytes	
to express the water channel aquaporin4, leading to cyto-
toxic swelling. The multifactor-driven edema raises ICP, 
decreases	cerebral	perfusion	pressure,	and	blood	flow,	and	
establishes	an	aggressive	cycle	that	intensifies	the	hypoxic	
environment and disrupts the brain’s ATP/energy supply. As 
a result of these variations, further injury to grey and white 
matter and a continuous discount in synaptic plasticity often 
occur [38]. The stable gut-brain axis is particularly impacted 
by TBI resulting in dysautonomia, gut-barrier dysfunction, 
and immune cell and microbiome structural variations. TBI 
prompts structural alteration to the intestinal villi and epithe-
lium by vague mechanisms, damaging tight junctions (TJs) 
and following TBI-associated complications. Brain-derived 
DAMPs activate local macrophages to lead to the secretion 
of	 tumor	necrosis	factor-alpha	(TNF-α),	which	 impairs	TJ	
function and increases gut permeability, as demonstrated in 
TBI	fly	models.	In	general,	primary	and	secondary	injuries	
result in complex pathogenesis that causes transient or per-
manent	deficits	[38–40] (Fig. 1).

Innate and adaptive immune responses to 
TBI

The innate immune response is the initial response to injury, 
but cells of the adaptive immune system quickly migrate 
and activate by inducing adhesion molecules on the BBB, 
releasing chemokines, and expressing co-stimulatory mol-
ecules on microglia [41].	 The	 inflammatory	 response	 to	
TBI initiates tissue injury and results in DAMP secretion 
[42]. DAMPs are recognized by Pattern Recognition Recep-
tors (PRRs) such as Toll-like receptors (TLR) on dendritic 
and	 myeloid	 cells,	 leading	 to	 pro-inflammatory	 cytokine	
production by direct intracellular signal transduction or by 
inflammasome	formation	(NLRP1	and	NLRP3)	[43]. High 
HMGB1 levels and other DAMPs such as S100b are related 
to poor clinical outcomes post-TBI [44, 45]. Studies involv-
ing murine models have shown that suppression or knock-
out of TLR-4, a main microglial receptor for HMGB1, 
decreases	 cerebral	 edema	 and	 cortical	 IL-6	 release	 [46] 
Additionally, administration of. anti-HMGB1 monoclonal 

antibodies	have	shown	anti-edema	effects	in	rats	with	TBI	
[47].	 Inflammasomes	 are	 protein	 complexes	 found	within	
the cytosol and are primarily present in the central nervous 
system (CNS) where they are expressed by astrocytes, 
microglia, and macrophages. They cleave and activate pro-
inflammatory	 caspases	 triggering	 cytokine	 activation	 (e.g.	
IL-1β	or	IL-18)	[43].

Poor clinical outcomes are associated with upregula-
tion	of	NLRP3	 inflammasomes	 [48]. Animal studies have 
shown	that	targeting	this	cascade	can	be	beneficial.	NLRP3	
deficient	mice	exhibit	less	histological	brain	damage,	lower	
caspase-1	levels,	and	consequently	lower	levels	of	IL-1β	in	
brain	 lysate.	 In	murine	studies,	 IL-1β	was	associated	with	
improved cognitive function post-TBI when compared with 
wild-type mice [49].	 The	 over-expression	 of	 pro-inflam-
matory	 cytokines	 (IL-1β,	 IL-6,	 IL-18,	 and	 TNFα)	 is	 the	
leading consequence of tissue injury, DAMP release, and 
inflammasome	activation	[50]. Likewise, glial and neuronal 
cell damage leads to the synthesis of various chemokines 
including IL-8, MCP1, and CCL5 [51], which attract and 
activate peripherally-derived and CNS-resident immune 
cells (microglia, neutrophils, and T-cells) to the injured site 
[41]. Several studies have reported a relationship between 
prominent	 pro-inflammatory	 cytokine	 responses	 and	 poor	
outcomes [50, 52], along with genetic studies highlighting 
that	polymorphisms	 in	cytokine	genes	(IL-1β	and	TNF	α)	
also determine outcomes [53].

Within hours of a TBI, the IL-8 chemotactic gradient and 
upregulation of vascular endothelium cell adhesion mol-
ecules (E-selectin and Intercellular Adhesion Molecule 1 
(ICAM-1) assist in neutrophil migration to injured tissue. 
This neutrophilic peak is predominant for day 2; then, num-
bers decrease, and other cells like monocyte-derived mac-
rophages,	natural	killer	cells,	and	T	 lymphocytes	 infiltrate	
and activate resident CNS microglia [41]. Although neutro-
phil	recruitment	to	injured	tissue	can	be	beneficial	through	
the elimination of cell debris [54], it can also have negative 
effects	such	as	direct	 toxicity	 to	neurons	by	matrix	metal-
loproteinases,	 ROS,	 and	 TNF-α	 [55]. Increased vascular 
permeability can also cause edema and subsequent cellular 
metabolic stress [41].

The activation of microglia is a reaction triggered by the 
binding of DAMPs to TLRs after a CNS injury. It occurs 
promptly following the initial decline in neutrophil response 
as demonstrated in mice and human TBIs [56]. In murine 
models, microglia/macrophage activation occurs within 
24 h post-injury [57]. Several studies have reported a pre-
dominant M2-like phenotype 1-week post-injury, which 
shifted to an M1-like phenotype in a second peak 1-month 
post-injury. Despite this phenotypic pattern, it is note-
worthy that the majority of activated microglia display 
mixed	 characteristics/differentiation	 [58–61]. In addition 
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active DCs, which present self-antigens and stimulate naïve 
T-cells. Simultaneously, with the recruitment of monocytes/
macrophages, T-cells migrate into the site of injury as a 
result of the upregulation of cell adhesion molecules and 
chemokine production. Although the contribution of autore-
active T-cells to autoimmune diseases like multiple sclero-
sis	is	well-documented,	their	specific	role	after	CNS	injury	
remains unclear [41].

Seven days post-injury, patients with TBI exhibit high 
concentrations of activated B-cells that are characterized 
by increased memory (CD27+) and class-switched memory 

to local microglia activation, peripherally-derived mono-
cytes/macrophages migrate to the injured site and undergo 
similar	differentiation	 in	 terms	of	 the	M1/M2	pattern	 [62, 
63]. Furthermore, TBI induces the release of peripherally 
derived cerebral antigens into the circulatory system, lymph 
nodes (through lymphatics, a perivascular system of waste 
clearance channels), and possibly also via meningeal lym-
phatic vessels where naïve immune cells prompt adaptive 
autoreactivity.

DAMPS can initiate adaptive autoimmunity by directly 
maturing immature dendritic cells (DCs) into mature and 

Fig. 1 Pathophysiology of traumatic brain injury [Traumatic brain 
injury (TBI), reactive oxygen species (ROS), calcium (Ca²+), Tumor 
necrosis	factor-alpha	(TNF-α),	Interferon-gamma	(IFN-γ),	interleukin	

(IL), Granulocyte-macrophage colony-stimulating factor (GM-CSF), 
C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine 
ligand 2 (CXCL2), Cell adhesion molecules (CAMs)]
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HMG-CoA reductase, inhibiting substrate binding and sub-
sequently blocking cholesterol biosynthesis [65]. Statins 
are widely used to reduce low-density lipoprotein (LDL) 
concentrations and decrease cardiovascular risk [66]. Addi-
tionally,	 they	 have	 several	 beneficial	 pleiotropic	 effects,	
including	 anti-oxidant,	 anti-excitotoxicity,	 anti-inflamma-
tory, and anti-thrombotic activity, as well as endothelial 
and vasoactive properties, immunomodulatory potential, 
and promotion of angiogenesis, neurogenesis, and synapto-
genesis to modulate parenchymal damage in TBI (as shown 
in Table 1) [13, 27, 28, 67–69]. Moreover, statins could be 
considered viable options as TBI therapies due to their exist-
ing Food and Drug Administration (FDA) approval, broad 
accessibility,	and	well-documented	adverse	event	profiles.

Statins fall into those that are fungal-derived (lovas-
tatin, simvastatin, and pravastatin) and those that are syn-
thetic	 (atorvastatin,	 cerivastatin,	 fluvastatin,	 pravastatin,	
pitavastatin, and rosuvastatin) [65, 70]. These lipid-low-
ering	 agents	 bear	 different	 structural	 and	physical	 proper-
ties, leading to two groups based on their hydrophobicity 

(CD27 + IgD-), suggesting germinal center (GC) generation 
by T cell-dependent immune responses [41, 64]. Several 
autoantibodies to cerebral proteins, including cytoskeletal 
structures and neurotransmitter receptors are reported in 
humans post-TBI. Studies suggest that TBI likely results 
in a polyantigenic response. The initial temporal pattern of 
immunoglobulin production is a short-lived IgM response, 
followed by more prolonged IgG production. Notably, the 
IgG response persists many years after injury, indicating 
persistent antigen exposure and the potential relevance of 
these autoantibodies in the chronic phase of TBI, rather than 
their being harmless bystanders [41] (Fig. 2).

Statins

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) 
reductase inhibitors, commonly referred to as “statins”, are 
prescribed as hypolipidaemic agents in the clinic. Their 
mechanism of action involves binding to the active site of 

Fig. 2	 Schedule	of	 inflammatory	 response	 in	TBI:	at	first	CNS	anti-
gen	and	DAMP	release	occur	and	quickly	followed	by	inflammasome	
activation and cytokine/chemokine production, which lead to attrac-
tion and activation of immune cells. This cellular recruitment initially 
comprises exclusively innate immune cells, but adaptive leukocytes 
are added within days. While this response mainly diminishes, a per-

centage of patients show a constant immune dysregulation, consists 
microglial activation, cytokine dysregulation, and constant autoanti-
body generation [Central nervous system (CNS), Damage-associated 
molecular patterns (DAMPs), Natural killer cells (NK), T lymphocyte 
(T)]
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The protective effect of statins in traumatic 
brain injury

Anti-neruroinflammation

Astrocyte	and	microglia	activation,	and	subsequent	TNF-α	
production,	 are	 signs	 of	 neuroinflammation	 observed	 in	
post-TBI brains [72, 73].	TNF-α	can	induce	both	apoptosis	
and	survival	signaling	 in	neurons	 through	TNF-α	receptor	
1/2 (TNFR1/TNFR2) [74, 75]. As mentioned earlier, neu-
roinflammation	 plays	 a	 significant	 role	 in	 the	 exacerba-
tion and outcomes of TBI. Simvastatin has been shown to 
exhibit	 anti-inflammatory	activity,	which	has	been	proven	
to be neuroprotective in both transient and permanent 
experimental TBI studies [76, 77]. Furthermore, it has been 
documented	in	the	literature	that	the	neuroprotective	effects	
of statins may be independent of their serum cholesterol-
lowering action [78, 79]. Chong et al. conducted studies in 
TBI rats and reported that simvastatin has neuroprotective 
effects	on	pre-existing	hypercholesterolemia,	likely	due	to	its	
anti-neuroinflammatory	activity	rather	than	its	cholesterol-
lowering activity. They found that the use of simvastatin 
in the acute stages following a TBI reduced astrocyte and 
microglia activation, neuronal TNFR1 activation, neuronal 
apoptosis,	 and	TNF-α	expression	 in	 rats	with	pre-existing	
hypercholesterolemia [80]. Another study demonstrated that 
both simvastatin and atorvastatin suppressed parenchymal 
inflammatory	cytokine	mRNA	expression,	 reduced	hippo-
campal degeneration, and improved functional neurological 
deficits	after	TBI	in	mice	[81].

Other	neuroprotective	effects	of	simvastatin	are	related	to	
its	anti-inflammatory	action	on	vascular	endothelial	inflam-
mation [76], the TLR4/ NF-kappaB pathway in an injured 
rat brain [77], and attenuation in astromicroglia as well as 
hippocampal	TNF-α	expression	[73].

Wang et al. have indicated that administration of simv-
astatin after injury decreases cerebral vascular endothelial 
cell activation via suppression of ICAM-1 expression, and 
ameliorates functional and histological outcomes in TBI 
experimental models [76]. Additionally, simvastatin admin-
istration noticeably prevented mRNA and protein expres-
sions	 of	 TLR4,	 NF-κB,	 and	 downstream	 inflammatory	
factors,	including	interleukin-1β	(IL-1β),	TNF-α,	IL-6,	and	
intercellular adhesion molecule-1 (ICAM-1). Simvastatin 
treatment	following	TBI	significantly	 improved	secondary	

(Table 2).	Structural	and	physicochemical	differences	cause	
variation in pharmacokinetic features, and could, in turn, 
affect	their	pharmacodynamics	and	therapeutic	effects	[65]. 
While	lipophilic	statins	(atorvastatin,	fluvastatin,	lovastatin,	
pitavastatin, and simvastatin) passively cross the BBB, both 
in vitro and in vivo reports document that hydrophilic statins 
can also enter the neuroparenchyma [71].

Table 1	 The	protective	effect	of	statins	in	traumatic	brain	injury
Summary	of	neuroprotective	effects	of	statins	in	TBI
Anti-neruroinflammation
↓	Inflammatory	cytokines	&	chemokines
↓	Oxidative	stress
↓	Microglial	activation
↓	Cerebral	edema
↑	BBB	integrity
Anti-apoptosis
↑	Bcl-2
↓	Caspase
Anti-edematous
↑	claudin-5
↓	ICAM-1
↓	PMN	parenchyma	infiltration
↓	BBB	permeability
Cerebral	blood	flow
↑	eNOS
↑	Endothelial	integrity
↓	VWF
↑	endothelial	integrity
↓	Microthrombosis
↓	Platelet	activity
Neurogenesis
↑	PI3K/Akt
↑	VEGF
Angiogenesis
↑	VEGF,	VEGFR2
↑	PI3K/Akt,	eNOS
Synaptogenesis
↑	Synaptophysin
Blood-brain barrier (BBB), Intercellular adhesion molecule-
1(ICAM-1), polymorphonuclear leukocytes (PMN), Vascular 
endothelial growth factor (VEGF), VEGF receptor (VEGFR-2), 
Endothelial isoform of nitric oxide synthase (eNOS), Von Willebrand 
factor (vWF)

Table 2 Pharmacokinetics of statins
characteristic Atorvastatin Fluvastatin Lovastatin Pitavastatin Pravastatin Rosuvastatin Simvastatin
Lipophilicity Lipophilic Lipophilic Lipophilic Lipophilic Hydrophilic Hydrophilic Lipophilic
Half-life 14 h 2.3 h 3 h 12 h 2 h 19	h 3 h
Excretion (Renal) (%) <2 6 10 2 20 10 13
Excretion (Faecal) (%) >98 93 83 79 70 90 60
Data summarised from [65, 71]
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disruption resulting directly from the traumatic injury or 
linked to abnormal brain function, astrocyte dysfunction, 
inflammatory-related	 mechanisms,	 and	 metabolic	 distur-
bances occurring as a response to injury [92]. BBB integrity 
is mainly determined by the tight TJs and adherens junc-
tions (AJs) between endothelial cells. Post-traumatic neu-
roinflammation	is	harmful	with	potentially	altered	junction	
protein expression, - resulting in increased paracellular per-
meability,	leukocyte	infiltration,	and	edema	[93].

Claudin-5 is a crucial component of TJs, and its absence 
is associated with in vitro BBB breakdown [94, 95]. Fol-
lowing TBI, there is a decrease in claudin-5 expression at 
24 h post-injury, but simvastatin has been shown to counter-
act this by increasing claudin-5 levels [90]. Brain edema is 
also	linked	to	the	infiltration	of	polymorphonuclear	leuko-
cytes	(PMN)	through	ICAM-1	expression.	Mice	deficient	in	
P-selectin and ICAM-1 exhibit reduced brain edema follow-
ing TBI [96]. Beziaud et al. demonstrated that simvastatin 
reduces	post-TBI	ICAM-1	expression	and	PMN	infiltration	
in the brain parenchyma. This reduction may inhibit the 
release	 of	 proinflammatory	 mediators	 and	 prevent	 BBB	
alterations. Therefore, simvastatin decreases cerebral edema 
within 24 h of TBI by reducing BBB permeability, ICAM-1 
expression,	neutrophil	parenchyma	infiltration,	and	enhanc-
ing claudin-5 expression [90]. Other studies investigating 
the administration of simvastatin and atorvastatin adminis-
tration	have	also	reported	their	anti-edematous	effects	after	
TBIs [77, 97, 98].

The vascular endothelium controls smooth muscle tone 
by	 NO	 which	 is	 generated	 by	 three	 various	 isoenzymes:	
endothelial form (eNOS), neuronal form (nNOS), and the 
inducible form (iNOS) [99, 100]. eNOS is expressed in 
cerebrovascular endothelium and leads to vasodilation. 
Statins can upregulate eNOS, independent of their serum 
cholesterol activity. Statin treatment has been reported to 
enhance eNOS mRNA, protein, and enzymatic activity, 
increasing	cerebral	blood	flow.	However,	reported	findings	
vary as Wible et al. showed decreased eNOS RNA levels in a 
murine TBI model, and eNOS RNA levels were unchanged 
with statin exposure [28]. In addition, decreased NO levels 
have been observed following simvastatin therapy as dem-
onstrated by Yüksel et al. [100].

Simvastatin treatment ameliorates neuropathological 
changes	of	diffuse	axonal	injury	in	the	acute	stages	of	exper-
imental TBI through reduced NO and vascular endothelial 
growth factor (VEGF) levels and inhibiting the develop-
ment of vasogenic brain edema [100]. BBB deterioration 
in a hypoxic environment is multifactorial, and linked to 
elevated NO and VEGF levels [101]. NO synthesized by 
iNOS	 has	 harmful	 effects	 after	 TBI	 by	 promoting	 BBB	
permeability and edema [100]. Blood vessels exposed to 
VEGF have increased permeability, and are associated with 

brain damage, such as brain edema, BBB impairment, corti-
cal	apoptosis,	and	motor	deficits	[77].

Xu et al. reported interesting data regarding atorvastatin’s 
neuroprotective	effects	in	TBI	through	its	anti-inflammatory	
and	immunomodulatory	activities.	].	These	effects	are	attrib-
uted to the alteration of peripheral leukocyte subset invasion 
and microglia/macrophage polarization status. Acute atorv-
astatin therapy at the injury site reduces the recruitment of 
natural killer cells, neutrophils, and T cells, as well as the 
production of chemokines (RANTES and IP-10) and pro-
inflammatory	cytokines	(IFN-γ	and	IL-6).	Interestingly,	this	
therapy choice also increases the concentrations of regula-
tory T cells (Tregs) in the peripheral spleen and brain, along 
with	their	major	effector	cytokines	IL-10	and	TGF-β.	Ator-
vastatin	 significantly	 reduces	 total	 microglia/macrophage	
activation but enhances the M2/M1 ratio by inhibiting M1 
polarization and enhancing M2 polarization. Furthermore, 
it leads to reduced neuronal cell death and improved behav-
ioral	deficits	[82]. .

Findings by Chen et al. also indicate that lovastatin’s 
protective mechanisms in the TBI brain may be attributable 
to	 dampening	 of	 the	 inflammatory	 response.	 Pre-admin-
istration of lovastatin in a rat model recovered functional 
outcomes and attenuated the extent of brain damage by 
decreasing	IL-1β	mRNA,	TNF-α,	and	protein	tissue	levels	
[83]. Moreover, Sánchez-Aguilar et al. reported that a dou-
ble-blind, randomized clinical trial (DB RCT) in patients 
with moderate to severe TBI suggested that rosuvastatin 
potentially	induces	anti-inflammatory	effects	and	promotes	
recovery after TBI [84].

Rosuvastatin has also been shown to inhibit TBI-induced 
intestinal injury in rat models, potentially through the block-
age	of	the	CD40/NF-κB	pathway	[85]. Organ dysfunction, 
particularly in the gastrointestinal system, is frequently 
observed in TBI patients [86]. Studies have indicated that 
TBI increases intestinal CD40 expression, nuclear factor 
(NF)-κB	activation,	and	pro-inflammatory	cytokine	produc-
tion, which contribute to the development of acute intesti-
nal mucosal injury [85]. ]. Rosuvastatin has been found to 
partially	suppress	CD40	expression,	attenuate	NF-κB	acti-
vation,	and	reduce	IL-1β	and	TNF-α	concentration.	Further-
more, histopathological assessment has demonstrated that 
rosuvastatin improves TBI-induced damage to the jejunal 
structure [85, 87–89].

Vascular and endothelial effects

Brain edema after TBI is a considerable causative factor 
for patient morbidity and mortality [90]. It is described 
as enhancement of brain volume due to a localized, or 
spread-accumulation	of	fluid	in	the	brain	parenchyma	[91]. 
In the acute TBI phase, edema is partially related to BBB 
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Reduction of excitotoxicity

An increase in extracellular glutamate concentration pro-
vokes the development of neurotoxicity, neuronal injury, 
and death [31, 115]. Statins have been shown to reduce glu-
tamate excitotoxicity by altering cell cholesterol metabolism 
and activating TNF receptor 2 signaling. The decrease in 
membrane cholesterol can attenuate the release of glutamate 
from nerve terminals suggesting a potential mechanism for 
the neuroprotective activity of statins [116]. Simvastatin has 
been found to decrease glutamate excitotoxicity by reducing 
the association of NMDA receptors with lipid rafts [117]. 
Additionally,	the	neuroprotective	effect	of	lovastatin	against	
glutamate-excitotoxicity has been attributed to the activa-
tion of TNF-R2 signaling pathways as demonstrated by 
Dolga et al. [118].

Neurogenesis

Besides protecting against neuronal apoptosis post-TBI, 
some data suggests that statin therapy promotes new neu-
ron	growth	and	differentiation.	Neurogenesis	defines	a	gen-
eration of new neurons in the CNS through the division of 
neural stem cells (NSC). Most neurogenesis happens at the 
initial	stages	of	development,	specific	brain	regions	preserve	
neurogenesis across the lifespan, encompassing the dentate 
gyrus (DG) of the hippocampus and the subventricular zone 
lining the lateral ventricles [119, 120]. Xie et al. showed 
that simvastatin promoted post-TBI neurological functional 
recovery possibly via increased Notch-1 expression, Notch 
signaling activation, and augmenting neurogenesis at the 
injured site [121]. Notch-1, a cell surface receptor, deter-
mines cell fate, and it may also determine the synaptic plas-
ticity of adult brains [122, 123]. Suppression of the Notch 
pathway	via	γ-secretase	inhibitors	attenuated	the	effects	of	
simvastatin. Thus, simvastatin-induced NSC proliferation 
may be linked with Notch signaling pathway activation. 
Extended NSC proliferation and neurogenesis following 
simvastatin therapy might be one of the underlying mecha-
nisms	behind	its	beneficial	therapeutic	effects	on	neurologi-
cal recovery in TBI rat models [121].

Cognitive	 deficits	 and	 motor	 dysfunction	 are	 frequent	
and highly disabling features in brain trauma survivors, with 
learning disability and memory loss the most prevalent cog-
nitive impairments among those with severe head injuries 
[124, 125]. It has been shown that statin treatment improves 
spatial learning 31–35 days after TBI onset in animal TBI 
models. On the other hand, statins stimulate new cell gen-
eration (neurogenesis) in the DG at days 15 and 35 post-
TBI. Neurogenesis may be related to the recovery of spatial 
learning due to the concurrence of spatial learning recov-
ery with neurogenesis [107]. To form functional neurons 

cerebral edema and ischemic damage compared to normal/
unexposed blood vessels [101]. Zhang et al. reported that 
VEGF boosts vascular permeability by provoking NO syn-
thesis and release. Reduction of BBB permeability is pos-
sible by inhibiting VEGF in the acute stages following brain 
damage [102]. Thus, Simvastatin reduces vasogenic brain 
edema and BBB leakage by reducing NO and VEGF.

Statins also diminish intravascular thrombosis in TBI 
models. Posttraumatic intravascular coagulation that results 
in thrombosis can be the main cause of secondary isch-
emia after TBIs [103, 104]. Animal studies demonstrate 
that delayed thrombosis occurs in the hippocampal CA3 
region and lesion boundary zone at 1–4 h post-injury, peaks 
at days 1–3, and then declines at days 8–15 [105, 106]. 
Intravascular thrombosis also happens in other parts of the 
cortex, corpus callosum, and striatum. Delayed thrombosis 
is	comprised	of	fibrin,	platelets,	and	von	Willebrand	factor	
(vWF). Atorvastatin treatment reduces plasma vWF levels 
and platelet activity and decreases delayed thrombosis after 
TBIs [106]. Atorvastatin can decrease pathological micro-
vascular characteristics post-TBI and promote restoration 
of spatial memory function, thereby improving functional 
outcomes [105].

Anti-apoptosis

Statins decrease neuronal cell apoptosis, leading to 
enhanced neuronal function following TBI [77, 107, 108]. . 
Administration of statins in animal models has been shown 
to improve neuron survival. In addition to primary neuronal 
necrosis, delayed neuronal apoptosis occurs in the bound-
ary zone of injured cortical sites and the hippocampal CA3 
region in TBI animal models [109, 110]. Both pathways 
for	neuronal	cell	death	can	lead	to	neuronal	loss	and	defi-
cits in neurological function in these areas [111]. However, 
these areas have the potential to be salvaged, and rescuing 
damaged neurons can lead to improvement in functional 
outcomes after brain injury [112]. Simvastatin treatment 
enhances Akt phosphorylation in post-TBI neuronal cells, 
which in turn phosphorylates downstream targets such as 
eNOS,	Forkhead	transcription	factor	1,	and	inhibitory-κB,	
resulting	in	anti-apoptotic	effects	through	the	inhibition	of	
caspase 3 activities [108]. Bcl-2 is an anti-apoptotic mem-
ber of the Bcl-2 protein family. Simvastatin also up-regu-
lates Bcl-2 gene expression and protein levels in neurons, 
leading to neuroprotection [113]. Atorvastatin can similarly 
rescue damaged neurons and/or increase their survival in 
these areas after injury, thereby reducing neurological func-
tional	deficits	[114].
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and	highlights	the	significant	role	of	eNOS	in	simvastatin-
induced angiogenesis following TBIs [133].

Synaptogenesis

Considerable neuronal damages occur in ipsilateral hippo-
campal formation following cortical contusion, disrupting 
normal neuronal activity. The CA3 pyramidal neurons are 
disrupted	by	this	injury,	causing	Schaffer	collaterals,	result-
ing	in	partial	CA1	regio	superior	dendritic	field	deafferenta-
tion. Following a TBI, CA1 long-term potentiation (LTP), a 
key synaptic event for learning and memory, undergoes sub-
stantial changes. TBI rat models have shown considerable 
changes in hippocampal synaptic transmission 15 days after 
an injury. Such changes may be causative factors behind 
learning	and	memory	deficits	[135]. Neurotrophic factor up-
regulation and neurogenesis are also linked to augmented 
synaptogenesis. Synaptophysin, associated with presynap-
tic terminals is also reduced in the peri-contusional cortex. 
Atorvastatin administration enhances synaptophysin stain-
ing of the ipsilateral and hippocampal CA3 region, demon-
strating either protective action against secondary synaptic 
injury, or an enhanced synaptogenesis [114]. Moreover, Wu 
et al. outlined that simvastatin elevated synaptophysin den-
sity in the ipsilateral hemisphere, resulting in elevated axo-
nal and synaptic density after a TBI [136].

Reduction of axonal injury

Simvastatin administration in experimental TBIs has been 
shown to decrease axonal injury, increase neurite outgrowth, 
and promote neurological functional recovery. Simvastatin 
may induce neurite outgrowth by manipulating the PI-3 K/
Akt/mTOR and PI-3 K/GSK-3b/APC pathways [136]. Addi-
tionally, combination treatment with simvastatin and other 
agents such as erythropoietin and niaspan has been found to 
improve axonal damage following CNS injury [137, 138].

Clinical statin treatment in TBI

Preclinical	models	demonstrate	the	benefits	of	statin	treat-
ment in TBI. However, there is limited clinical data avail-
able (Table 3). Lokhandwala et al. found that TBI patients 
who were receiving statins before the injury showed better 
neurological improvement compared to matched controls. 
The statin-treated patients had a lower percentage of in-
hospital mortality, skilled nursing facility disposition, and 
a higher median Glasgow Outcome Scale (GOS)-extended 
score [139].

In	Shafiee	et	al.	DB	placebo-controlled	RCT	on	patients	
with severe TBI, oral simvastatin therapy (40 mg, daily) for 

from newly generated cells, the following must occur- dif-
ferentiation, maturation, migration, and formation of new 
synapses [107, 126, 127]. It takes four weeks to complete 
these steps [127]. Statin treatment considerably enhances 
the quantity of NeuN/BrdU-co-labeled cells compared to 
TBI + saline groups, suggesting that statin therapy enhances 
differentiation	 into	mature	 neurons	 [107, 128]. Following 
electrophysiological studies, it has been shown that newly 
generated cells migrating into the granular zone have the 
potential to function as mature neurons [107, 129]. There-
fore,	spatial	learning	recovery	that	occurs	in	week	five	after	
a TBI may be due to the aforementioned steps [107].

Angiogenesis

Angiogenesis is a critical determinant of functional out-
come post-TBI [130]. Statins have been shown to promote 
angiogenesis in the injured brain. Endothelial progenitor 
cells (EPCs) are a type of stem cell that contribute to the 
construction of new blood vessels in postnatal vasculogen-
esis and angiogenesis [131]. These cells are typically found 
in the bone marrow and migrate to the peripheral blood in 
higher concentrations following a TBI. The levels of circu-
lating EPCs in the peripheral blood EPC levels peak at 48 h 
and return to normal after day seven [132]. The concentra-
tion of circulating EPCs has been associated with the sever-
ity of prognosis.

Atorvastatin therapy enhances the circulation and mobi-
lization of EPCs in the TBI model promoting angiogenesis 
and vasculogenesis [131]. This has been shown to cause 
atorvastatin-induced functional outcomes in TBI rat mod-
els [114, 131]. Also, others have shown that simvastatin 
promotes angiogenesis [107, 128, 133]. Simvastatin has 
even been shown to heighten TBI-induced angiogenesis by 
enhancing endothelial cell proliferation and vascular length. 
It stimulates VEGF expression [128] an important protein 
for angiogenesis activation [134]. Also, it further increases 
VEGF receptor (VEGFR-2) concentrations at the injured 
cortex [133].	VEGF	binds	 to	VEGF-2	 (flk-1)	on	endothe-
lial cell surfaces inducing intracellular tyrosine kinases and 
activating numerous downstream triggers for angiogenesis 
[134]. Microvascular permeability, endothelial cell prolifer-
ation, migration, and survival are mediated by downstream 
activation of VEGFR-2 via VEGF. Signals for example for 
Akt-dependent eNOS phosphorylation occur via intracel-
lular signaling pathways, including the Raf-Mek-Erk and 
the PI3K/Akt pathway. These are pivotal for angiogenesis. 
Reinforced p-eNOS stimulates angiogenesis promoting 
mural	 cell	 infiltration	 of	 immature	 angiogenic	 branches.	
This indicates that simvastatin induces phosphorylation 
of eNOS in a VEGFR-2/ PI3K/ Akt-dependent pathway 
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compared to controls respectively on the 14th day of hospi-
talization. Atorvastatin therapy also decreased the ICU stay 
of the treated group [141].

Farzanegan	et	al.	conducted	an	RCT	on	65	patients	with	
moderate	(GCS:	9–13)	to	severe	(GCS:	5–8)	TBI.	Atorvas-
tatin	 treatment	 showed	 significantly	 better	 functional	 out-
comes	as	measured	by	GOS,	modified	Rankin	scale	(MRS),	
and Disability Rating Scale (DRS) scores three months 
post-injury compared to placebo. However, atorvastatin did 
not	affect	reducing	the	contusion	expansion	rate	[142].

Although another trial by Robertson et al. of atorvas-
tatin presented the safety of atorvastatin administration for 
7	 days	 post-injury,	 it	 did	 not	 show	 significant	 changes	 in	
neurological recovery after mild TBI [143].	Also,	a	differ-
ent retrospective case-control study by Neilson et al. in an 
Asian	population	with	severe	TBI	did	not	show	a	significant	
improvement in mortality or GOS between statin therapy 
and the control group [144].

Finally, a small prospective RCT using rosuvastatin exhib-
ited	a	decline	 in	amnesia	 time;	however,	no	effect	on	dis-
ability three months following moderate TBI (GCS =	9–13)	
was observed [145]. This study was followed by a DB RCT 
comprising moderate and severe TBIs and revealed lowered 
TNFα	levels	and	disability	scores	at	6	months	[84].

In addition to clinical trials, there have also been large 
retrospective	 studies	 conducted	 in	 this	 field,	 which	 have	
reported promising results. Khokhar et al. conducted a retro-
spective	cohort	study	on	100,515	patients	aged	65	years	and	
older, which reported that the use of statins after TBI led to 
a decrease in mortality following hospital discharge, as well 
as a decrease in the incidence of stroke, depression, AD, and 
related dementias [146]. Another retrospective cohort study 
by	the	same	research	group,	 this	 time	on	112,109	patients	
aged	65	years	and	older,	also	observed	a	considerable	reduc-
tion in in-hospital mortality after TBI. However, these posi-
tive	findings	need	to	be	validated	in	randomized	controlled	
trials	to	better	understand	the	effect	of	statins	[147]. Addi-
tionally, a cohort study assessing 28,815 patients following 
concussion	 reported	 that	 statin	 usage	 caused	 a	 significant	
reduction in the risk of developing dementia [148].

Discussion

TBI remains an outstanding and universal public health 
issue for which there are unmet clinical treatment needs. 
Despite substantial research with the use of cellular and 
animal models of brain injury, no therapeutic approach 
has	been	effectively	 transferred	from	the	 laboratory	 to	 the	
bedside. One cause for this might be a focus on therapeutic 
approaches targeting a single event or pathology, for exam-
ple, intracellular calcium overload [107, 149]. However, 

10 days led to a considerably greater Glasgow coma scale 
(GCS) score at discharge and one month after discharge. 
However,	 it	did	not	 show	notable	differences	between	 the	
two cohorts in terms of duration of mechanical ventilation, 
intensive care unit (ICU) and neurosurgery ward stay [140].

Another DB RCT by Soltani et al. evaluated atorvas-
tatin in moderate to severe TBI and showed improved GCS 
in TBI patients. It appears that atorvastatin therapy may 
decrease	 inflammatory	 factors	as	evidenced	by	 lower	 lev-
els of C-reactive protein (CRP), erythrocyte sedimentation 
rate (ESR), and white blood cells in the atorvastatin group 

Table 3 Randomized clinical trials of statins in traumatic brain injury
Refer-
ence 
(Date)

Trial design Sample 
size	&	TBI	
severity

Stain 
therapy 
design

Outcomes

Shafiee	
[140]

Double-
blind 
placebo-
controlled 
randomized 
clinical trial

98	patients	
with severe 
TBI

Simvastatin 
(40 mg, 
daily) for 
10 days

↑	Glasgow	
Coma Score
(ns) ICU stay
(ns) neurosur-
gery ward stay
(ns) mechani-
cal ventilation 
length

Soltani 
[141]

Double-
blind, 
randomized 
clinical trial

60	patients	
with 
moderate to 
severe TBI

Atorv-
astatin 
(40 mg, 
daily) until 
hospitaliza-
tion in the 
ICU

↓	CRP
↓	ESR
↓	white	blood	
cells
↓	ICU	stay
↑	Glasgow	
coma score

Rob-
ertson 
[143]

Random-
ized clinical 
trial (Phase 
II)

52 patients 
with mild 
TBI

Atorvas-
tatin (1 up 
to 80 mg/
kg, daily) 
for 7 days

(ns) PCS
(ns) PTSD
(ns) depres-
sive symptoms 
cognition
(ns) memory 
status
(ns) verbal 
fluency
(ns) functional 
status
(ns) work status

Far-
zanegan 
[142]

Random-
ized clinical 
trial

65	patients	
with 
moderate to 
severe TBI

Atorv-
astatin 
(20 mg, 
daily) for 
10 days

↑GOS
↓	MRS
↓	DRS

Sán-
chez-
Aguilar 
[84]

Double-
blind 
randomized 
clinical trial

36	patients	
with 
moderate to 
severe TBI

Rosuv-
astatin 
(20 mg) for 
10 days

↓	disability	
scores
↓	TNFα

Tapia-
Perez 
[145]

Double-
blind 
randomized 
clinical trial

21 patients 
with mod-
erate TBI

Rosuv-
astatin 
(20 mg) for 
10 days

↓	amnesia	time

Intensive care unit (ICU), C-reactive protein (CRP), erythrocyte 
sedimentation rate (ESR), post-concussion symptoms (PCS), post-
traumatic stress disorder (PTSD), Glasgow Outcome Score (GOS), 
modified	 Rankin	 scale	 (MRS),	 Disability	 rating	 Scale	 (DRS),	
Tumour	necrosis	factor	α	(TNFα)
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association, optimal treatment duration, administration 
route,	 and	 differing	 effects	 of	 various	 statins	 to	 optimize	
treatment strategies.
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